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Abstract—In this article, a data-driven online learning con-
troller (DD-oLC), which is a completely data-based control
strategy, is proposed. The method generates feed-forward control
signals by learning the inverse dynamics of the system from online
data via an interval type-2 evolving fuzzy system (IT2EFS), which
has the advantage of utilizing the structural evolving and param-
eter adaptive capabilities of IT2EFS to achieve incremental and
continuous learning, and is better suited for robotic manipulators
that have been in open environments for a long-term period.
Meanwhile, a QR decomposition-based recursive least squares
(QRD-RLS) residual model online learning module is designed
to enhance control performance, which complements the residual
torques in the control process. Finally, the advancement of the
proposed controller is demonstrated by simulation verification.

Index Terms—Online learning control, evolving fuzzy systems,
robotic manipulators, error compensation.

I. INTRODUCTION

Robotic manipulators, as industrial automation equipment,
have achieved a wide range of applications in various fields.
Nowadays, driven by the expansion of application scenarios
and technological innovation, the control performance require-
ments of robotic manipulators in multiple industries have also
put forward higher demands. Therefore, the problem of how to
improve the high-precision tracking control of such strongly
coupled nonlinear systems as robotic manipulators has become
a major difficulty in this field [1], [2].

Nowadays, many control strategies for robotic manipulators
have been applied to improve their tracking control accuracy,
such as neural networks (NNs) control [3], sliding mode
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control (SMC) [4], and fuzzy control [5], etc. In [6], an
adaptive NNs control method is proposed to solve the n-
link constrained robotic manipulator control problem driven by
practical requirements. In [7], a prescribed-time fuzzy adaptive
control is designed to minimize the effects of the initial values
of the system and the controller parameters on the settling-time
function of the finite/fixed time control, and to achieve precise
control of the n-link robotic manipulator. In [8], an adaptive
fixed-time SMC strategy is proposed for solving control prob-
lems with parameter uncertainty and input-saturated robots.
These control strategies can solve the robotic manipulator
tracking control problem well in some scenarios, but their
controller design relies on model information. However, the
high degree of nonlinearity and uncertainty in the robotic
manipulator make it still a challenge to accurately track its
trajectory in the lack of model information.

Noticeably, in recent years, advanced methods such as
machine learning [9], [10] and reinforcement learning [11],
[12] have gradually entered the field of intelligent control,
and such methods can have excellent performance even when
the system model is uncertain. Among them, machine learning
is capable of extracting knowledge from training samples or
data streams, and is often used to construct dynamic models
of nonlinear systems, its powerful learning ability can learn
inverse dynamics models of robotic systems from data, thus
receiving extensive attention from scholars in related fields
[13], [14]. However, the existing control methods based on
inverse dynamics model learning in the field of robotics are
mostly based on fixed structure controllers, and the learning
process mainly focuses on the model parameters, which may
be inappropriate for robotic manipulators that have been in
an open environment for a long-term period. Therefore, it
is crucial to design controllers with the ability of structure



evolution and knowledge extraction [15].
Evolving fuzzy system (EFS), as an online learning algo-

rithm with stepwise evolving structure and adaptive param-
eters, has achieved great success in feature extraction and
system modeling [16], [17], and also provides new ideas and
tools for online learning control of robotic manipulators. In
[18], an online learning control strategy is proposed to achieve
the complex dynamics trajectory tracking control problem in
robotic systems. In [19], a robust evolving cloud-based con-
troller (RECCo) is proposed to achieve process control without
any mathematical model of the controlled process. However,
noteworthy is that although the evolving fuzzy system is able
to establish the inverse dynamic model, τ = f−1(q, q̇, q̈), of
the robotic manipulators model using structural evolving and
parameter learning, residuals will inevitably exist between the
total joint torques at the output of the controller and the actual
values due to the nonlinear factors that are difficult to model
physically and the effects of the disturbances at the torque end
[20].

Therefore, this study focuses on online learning of the
inverse dynamics of the manipulators using interval type-2
evolving fuzzy systems (IT2EFS), and a novel online learning
controller is designed based on the structural evolving and
parameter adapting capabilities of the IT2EFS. Meanwhile,
a QR decomposition-based recursive least squares (QRD-
RLS) residual model online learning module is designed to
compensate for the residual torques during the control process
to improve the control accuracy.

The rest of the article can be outlined as below. An introduc-
tion to the inverse dynamics model and the IT2 Takagi-Sugeno
fuzzy system (IT2-TSFS) is given in section II. In Section
III, the details of the proposed data-driven online learning
control framework is introduced. In Section IV, the simulation
experiment is conducted to validate the advancement of the
proposed method. Finally, Section V gives a conclusion of the
article.

II. PROBLEM FORMULATION

A. Interval Type-2 TS Fuzzy System

The form of the first-order IT2-TSFS can be expressed as
follows:

Ri : If x1 ∼ Ãi
1 and ... and xn ∼ Ãi

n, Then yi (1)
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And, by using the reduction procedure [15], the output ŷ is
as follows:
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where yi = x̄Tai, ξi = ζϕi
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i
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and ζ is the positive constants which satisfy ζ ∈ (0, 1] and
x = [1, xT]T.

B. Inverse dynamics

Based on the reference trajectory, the joint torques required
to achieve the target trajectory are calculated, a process
often referred to as inverse dynamics. The inverse dynamics
formulation, based on the equations of motion of the robotic
manipulators with n degrees of freedom, can be described as

M(q)q̈ + C(q, q̇)q̇ +G(q) + ε(q, q̇, q̈) = F τ (7)

where q, q̇, q̈ ∈ Rn represent the position, velocity, and accel-
eration of each joint. F τ ∈ Rn is the torque. M(q) ∈ Rn×n

stands for the inertia matrix, C(q, q̇) ∈ Rn×n represents the
centripetal force and the Coriolis force matrix. G(q) ∈ Rn

signifies the gravity, ε(q, q̇, q̈) ∈ Rn indicates some uncer-
tainties in the model, including unmodeled dynamics, complex
frictions, possible disturbances, etc.

In this study, a data-driven learning-based control method
is used to construct the inverse dynamics model of the robotic
manipulators, whereby Eq. (7) can be rewritten in the follow-
ing form:

F τ = f−1(q, q̇, q̈) (8)

III. PROPOSED DATA-DRIVEN ONLINE LEARNING
CONTROL FRAMEWORK

A. Controller Structure

The data-driven online learning control (DD-oLC) frame-
work proposed is shown in Fig. 1. The control strategy
contains IT2EFS, a feedback controller (the PID controller
is used in this article), and a residual compensation module.

The feedback controller provides sufficient learning data to
IT2EFS in the initial stage of the system to help it construct an



Fig. 1. The diagram for the proposed controller framework.

inverse dynamic of the system. IT2EFS generates feedforward
control torques during the control process. The residual mod-
ule is capable of learning the control residual model online to
approximate the mismatch torques and compensate for residual
torques to improve the control accuracy. The final control
torques can be expressed as:

F = F fb + F ff + F err (9)

where F fb is the output of the feedback controller, F ff is the
output of IT2EFS, and F err is the output of the residual error
model.

B. Interval type-2 evolving fuzzy systems

1) Rule generation: The IT2EFS is initialized based on the
first data x1, where the global parameters are initialized as
[15]:

υ1
j1 = x1

j −∆x

υ1
j2 = x1

j +∆x

σ1
j = σinit

a1 = O(n+1)×1

Σ1 = κI(n+1)×(n+1)

(10)

where ∆x is the uncertain mean and σinit = 0.5 is the initial
value of the width. Σ1 is the the corresponding covariance
matrix. κ = 1000 is a constant for initialization. The mean
value of firing strength is determined as:

ϕi
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1

2
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i
)

(11)

Then, the following rule generation condition can be ob-
tained. If ϕi⋆

† < Ξg
th, generate a new rule, where Ξg

th =

e0.5(2/(1+ (Λ̃k))− 1) is the rule generation threshold, where
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rule generation condition holds, a new rule RC+1 is generated,
then
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where υi⋆

j = (υi⋆

j1 + υi⋆

j2)/2 and β = 0.5.
2) Rule base optimization: If the rule generation conditions

are not met, the relevant rules Ri⋆ need to be updated as
follows [21]:
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In the online learning process, as the data samples increase,
it may result in partially constructed rules becoming similar,
and therefore they need to be merged. Before merging, it
is necessary to determine which rules need to be merged,
therefore, the following rule overlap measure criterion is
defined:

O(Rs1, Rs2) =
µs1
† (υs2) + µs2

† (υs1)

2
, O(·) ∈ (0, 1] (20)
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th = 0.95 is the rule merging threshold and
S(Rs1, Rs2) = max∀s1,s2(O(Rs1, Rs2)), then rule Rs1 is
merged with Rs2 as follows:
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where N im

k = Ns1
k + Ns2
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k − υim

k

∥∥2 and B =∥∥υs2
k − υim

k

∥∥2. Rule merging will use Rim instead of Rs1

and Rs2, and the number of rules will be reduced by one.
To reduce redundancy in the rule base, the utility [21] is

used to determine which rules are redundant. The utility can
be calculated as follows:

U i
k = U i

k−1 +
θik − U i

k−1

T − Tg + 1
(24)



where T is the time k, and Tg is the time when the Ri was
generated, and θik is the normalized firing strength. When the
utility of a rule is below the threshold (U i

k < Ξp
th), the rule is

pruned, where Ξp
th = Ξg

th is the rule pruning threshold.
3) Parameters Learning: In addition to structural learning,

the parameters of IT2EFS need to be learned. Hence, the
consequent parameters are updated by the local weighted
recursive least square [15]. The error functions is defined as:

Ei =

n∑
k=1

ξik(yk − x̄T
ka

i
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2 (25)

Hence, the parameter is updated as:

ai
k+1 = ai

k +
ξikΣ

i
kx̄k(yk − x̄T

ka
i
k)

1 + ξikx̄
T
kΣ

i
kx̄k

(26)

Σi
k+1 = Σi

k − ξikΣ
i
kx̄kx̄

T
kΣ

i
k

1 + ξikx̄
T
kΣ

i
kx̄k

(27)

And for the antecedent parameters, there is the following
error function:

Ek =
1

2
(yk − ŷk)

2 (28)

Based on the gradient descent algorithm, the antecedent
parameters in rule i and variable j can be updated as

υi
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where ς is the learning rate. The derivation of the antecedent
part in (29) to (31) is as follows:
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∂ŷk

∂ϕ
i

∂ϕ
i

∂∆xi
j

+
∂ŷk

∂ϕi

∂ϕi

∂∆xi
j

) (33)

∂Ek

∂σi
j

= ỹ(
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where ỹ = ŷk − yk.

C. Online learning of the residual error model

Although IT2EFS has been able to approximate the inverse
dynamic F τ = f−1(q, q̇, q̈) of the robotic manipulators
satisfactorily. However, due to the nonlinear factors and the
influence of disturbances at the torque end, there is inevitably
a residual between the total joint torque at the output of
the controller and the actual value. Therefore, in this study,
a recursive strategy is designed to learn the residual model
online to compensate for the mismatched torque during the
control process. The predicted residual torques are defined by
the indirect method as follows [22]:

F err,k = F k−1 − F̃ τ ,k−1 = EkSk (35)

where Ek is the linearized residual error model, and Sk =
[qk, q̇k, qd,k+1, q̇d,k+1]

T is the system state. From this, online
learning data can be defined as Dk = ⟨F err,k, Sk⟩. To learn the
residual error model, the QR-decomposition based recursive
least-squares (QRD-RLS) are introduced. Ek is determined by
minimizing the following performance metrics:

JK(Ek) =

k∑
i=0

ρk−i ∥F err,k − EkSk∥2 (36)

where ρ ∈ (0, 1] is the forgetting factor. Construct the
following augmented matrix:

Zk =

[
Rk−1√
ρ · S̃T

k

]
(37)

b̃k =

[
bk−1√

ρ · F T
err,k

]
(38)

where Rk−1 is the upper triangular matrix, bk−1 is the right-
hand side item and S̃k = [1, Sk]

T. Performing QR decompo-
sition with Givens rotation for Zk and b̃k:

Zk = QkRk (39)

bk = QT
k b̃k (40)

where Qk is the orthogonal matrix. Thus, the following
updated Ek is obtained:

Ek = (R−1
k bk)

T (41)

Finally, the following residual error model is obtained:

F̂ err,k = EkS̃k (42)

where S̃k is [1, Sk]
T. In the control process, the residual error

model can be updated online to approximate the mismatch
torques in the control process, providing a compensation signal
to enhance the control accuracy.

IV. SIMULATION RESULTS

To verify the advancement of the proposed control strategy,
simulation experiments are conducted on the first three joints
of the common benchmark PUMA560 (shown in Fig. 2). The
initial value is specified as q0 = [0, 90,−90]T (deg) and the
sampling period is 1000 Hz. The ideal trajectory is given as:

qd = A sin(t) + q0, (deg) (43)

where A = [80, 70, 70]T.
To simulate possible changes in real-world dynamics, the

following uncertainties are introduced in the simulation pro-
cess. For unmodeled dynamics and parameter perturbations,
it is assumed that there is a 30% uncertainty in the length,
mass, and inertia of the ith link. And the following external
disturbances are set:

τ ex =

{
6 sin(0.3πt) + 2 sin(q)q̇ if t < 10s

30 sin(0.3πt) + 10 sin(q)q̇ if x ≥ 10s
(44)

In addition, to better determine the control performance,
IAE, ITAE, and RMSE metrics are used to quantify the control
accuracy.



Fig. 2. The schematic diagram of the PUMA560.

Fig. 3. The position tracking error of joint 1.

Fig. 4. The position tracking error of joint 2.

Fig. 5. The position tracking error of joint 3.

The position tracking error of joints are shown in Figs.
3, 4, 5. Method a is a PID controller, and method b is a

Fig. 6. The number of rules.

TABLE I
THE RESULTS OF THE PERFORMANCE COMPARISON.

Controller RMSE(Avg.) IAE(Avg.) ITAE(Avg.)

method a 5.4245e-02 0.9043 0.5259

method b 0.6129e-02 0.0434 0.0110

DD-oLC 0.1242e-02 0.0075 0.0015

control strategy that only uses IT2EFS without a residual
compensation module. According to the results in Table I, it
is clear that the control strategy proposed in this article has
better tracking control performance compared to methods a
and b. And the curve of the rule change is shown in Fig. 6,
based on the change in the number of rules, it can be seen that
DD-oLC can evolve its structure according to the dynamics of
the control object throughout the control process.

V. CONCLUSIONS

This article proposed a novel data-driven online learning
controller (DD-oLC) for robotic manipulators that addresses
uncertainty in practical applications. The strategy combines
a feedback controller, IT2EFS, and a residual compensation
module. The IT2EFS is based on its structure evolving and
parameter adaptive capabilities to achieve incremental contin-
uous learning to approximate the inverse dynamic model of the
system to generate feed-forward control signals. Meanwhile,
the residual error online learning module based on QRD-
RLS can learn the residual error model online to provide the
residual torque values during the control process. With the
synergistic effect of the above two, DD-oLC can generate
the final optimal control torques. The advancement of the
proposed scheme was verified through simulation.
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